Welcome to lfxai’s documentation!

Label-Free XAI

Tests License: MIT Documentation Status image

Code Author: Jonathan Crabbé (jc2133@cam.ac.uk)

This repository contains the implementation of LFXAI, a framework to explain the latent representations of unsupervised black-box models with the help of usual feature importance and example-based methods. For more details, please read our ICML 2022 paper: ‘Label-Free Explainability for Unsupervised Models’.

1. Installation

From PyPI

pip install lfxai

From repository:

  1. Clone the repository

  2. Create a new virtual environment with Python 3.8

  3. Run the following command from the repository folder:

pip install .

When the packages are installed, you are ready to explain unsupervised models.

2. Toy example

Bellow, you can find a toy demonstration where we compute label-free feature and example importance with a MNIST autoencoder. The relevant code can be found in the folder explanations.

import torch
from pathlib import Path
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, Subset
from torchvision import transforms
from torch.nn import MSELoss
from captum.attr import IntegratedGradients

from lfxai.models.images import AutoEncoderMnist, EncoderMnist, DecoderMnist
from lfxai.models.pretext import Identity
from lfxai.explanations.features import attribute_auxiliary
from lfxai.explanations.examples import SimplEx

# Select torch device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

# Load data
data_dir = Path.cwd() / "data/mnist"
train_dataset = MNIST(data_dir, train=True, download=True)
test_dataset = MNIST(data_dir, train=False, download=True)
train_dataset.transform = transforms.Compose([transforms.ToTensor()])
test_dataset.transform = transforms.Compose([transforms.ToTensor()])
train_loader = DataLoader(train_dataset, batch_size=100)
test_loader = DataLoader(test_dataset, batch_size=100, shuffle=False)

# Get a model
encoder = EncoderMnist(encoded_space_dim=10)
decoder = DecoderMnist(encoded_space_dim=10)
model = AutoEncoderMnist(encoder, decoder, latent_dim=10, input_pert=Identity())
model.to(device)

# Get label-free feature importance
baseline = torch.zeros((1, 1, 28, 28)).to(device) # black image as baseline
attr_method = IntegratedGradients(model)
feature_importance = attribute_auxiliary(encoder, test_loader,
                                         device, attr_method, baseline)

# Get label-free example importance
train_subset = Subset(train_dataset, indices=list(range(500))) # Limit the number of training examples
train_subloader = DataLoader(train_subset, batch_size=500)
attr_method = SimplEx(model, loss_f=MSELoss())
example_importance = attr_method.attribute_loader(device, train_subloader, test_loader)

3. Reproducing the paper results

MNIST experiments

In the experiments folder, run the following script

python -m mnist --name experiment_name

where experiment_name can take the following values:

experiment_name

description

consistency_features

Consistency check for label-free
feature importance (paper Section 4.1)

consistency_examples

Consistency check for label-free
example importance (paper Section 4.1)

roar_test

ROAR test for label-free
feature importance (paper Appendix C)

pretext

Pretext task sensitivity
use case (paper Section 4.2)

disvae

Challenging assumptions with
disentangled VAEs (paper Section 4.3)

The resulting plots and data are saved here.

ECG5000 experiments

Run the following script

python -m ecg5000 --name experiment_name

where experiment_name can take the following values:

experiment_name

description

consistency_features

Consistency check for label-free
feature importance (paper Section 4.1)

consistency_examples

Consistency check for label-free
example importance (paper Section 4.1)

The resulting plots and data are saved here.

CIFAR10 experiments

Run the following script

python -m cifar10

The experiment can be selected by changing the experiment_name parameter in this file. The parameter can take the following values:

experiment_name

description

consistency_features

Consistency check for label-free
feature importance (paper Section 4.1)

consistency_examples

Consistency check for label-free
example importance (paper Section 4.1)

The resulting plots and data are saved here.

dSprites experiment

Run the following script

python -m dsprites

The experiment needs several hours to run since several VAEs are trained. The resulting plots and data are saved here.

4. Citing

If you use this code, please cite the associated paper:

@misc{Crabbe2022LFXAI,
  doi = {10.48550/ARXIV.2203.01928},
  url = {https://arxiv.org/abs/2203.01928},
  author = {Crabbé, Jonathan and van der Schaar, Mihaela},
  keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {Label-Free Explainability for Unsupervised Models},
  publisher = {arXiv},
  year = {2022},
  copyright = {Creative Commons Attribution 4.0 International}
}

API documentation

Models

Explanations